

Artificial Intelligence

Lecture 3 - Problem Solving and Search II

Outline

● Preferred solutions
● Optimal search procedures
● Uniform cost search
● Informed search procedures
● A* search

Problem Definition

● A search problem is defined by:
● a state space (i.e., an initial state or set of initial

states and a set of operators)
● a set of goal states (listed explicitly or given

implicitly by means of a property that can be applied
to a state to determine if it is a goal state)

● A solution is any path in the state space from
an initial state to a goal state

Preferred Solutions

● One solution may be preferable to another - e.g., we
may prefer paths with fewer or less costly actions

● In the route planning problem, we might prefer
solutions which
● minimise the distance travelled
● the time taken to reach the goal
● the number of cities (changes) if we are travelling by train
● the monetary cost (of fuel or train tickets etc)
● or some combination of these and other factors …

Path Cost

● A path cost function, g(n), assigns a cost to a
path n and can be used to rank alternative
solutions

● If all operators have the same cost (e.g, moves
in chess) the cost is simply the number of
operator applications

● If different operators have different costs (e.g,
money, time etc) the path cost is sum of the
costs of all the operator applications in the path

Completeness and Optimality

● A search procedure which is guaranteed to find
a solution (if one exists) is said to be complete

● A search procedure which is guaranteed to find
a least cost solution (if a solution exists) is said
to be optimal

● A search procedure which expands the
minimum number of nodes necessary to find an
optimal solution (if a solution exists) is said to
be optimally efficient

Breadth-first Search

● Proceeds level by level down the search tree
● First explores all paths of length 1 from the root

node, then all paths of length 2, length 3 etc.
● Starting from the root node (initial state)

explores all children of the root node, left to
right

● If no solution is found, expands the first
(leftmost) child of the root node, then expands
the second node at depth 1 and so on …

Properties of Breadth-first Search

● Breadth-first search is complete (even if the
state space is infinite or contains loops)

● Guaranteed to find an optimal solution if cost is
a non-decreasing function of the depth of a
node - e.g., if all operators have the same cost

● Time and space complexity is O(bd) where d is
the depth of the shallowest solution

Depth-first Search

● Proceeds down a single branch of the tree at a time
● Expands the root node, then the leftmost child of the

root node, then the leftmost child of that node etc.
● Always expands a node at the deepest level of the

tree
● Only when the search hits a dead end (a partial

solution which can’t be extended) does the search
backtrack and expand nodes at higher levels

Properties of Depth-first Search

● Depth-first search requires much less memory than
breadth-first search - space complexity is O(bm) where m
is the maximum depth of the tree

● Time complexity is O(bm)

● However depth-first search is not complete (unless the
state space is finite and contains no loops)
● we may get stuck going down an infinite branch that doesn’t lead

to a solution

● Even if the state space is finite and contains no loops, it is
not guaranteed to find an optimal solution

Uniform-cost Search

● Breadth-first search finds the shallowest goal
state - this may not always be the least cost
solution for a general path cost function

● Uniform-cost search expands leaf nodes in
order of cost (as measured by the path cost
g(n))

● Expands the root node, then the lowest cost
child of the root node, then the lowest cost
unexpanded node etc.

Example: Simple Route Planning

● initial state: A
● goal state: F

Example: Uniform-cost Search

Example: Uniform-cost Search

Example: Uniform-cost Search

Example: Uniform-cost Search

Example: Uniform-cost Search

Example: Uniform-cost Search

Example: Uniform-cost Search

Example: Uniform-cost Search

Example: Uniform-cost Search

Example: Uniform-cost Search

Example: Uniform-cost Search

Example: Uniform-cost Search

State, Search Problem & Node

// a search problem

class SearchProblem{

public State initialState();

public booleangoalTest(State s);

public List<Operator> operators();

}

// a search tree node

class Node{

public State state();

public Node parent();

public List<Node> expand(List<Op> ops);

public int cost();

}

Uniform-cost Search Algorithm

// pseudocode implementing uniformcost search

public Node uniformCostSearch(SearchProblem problem) {

LinkedList<Node> nodes

 = new LinkedList<Node>(new Node(problem.initialState()))

while(true){

if (nodes.size() == 0) then { return failure }

Node node = nodes.removeFirst()

if (problem.goalTest(node.state()) then { return node }

nodes.addAll(node.expand(problem.operators())

// Sort the nodes in order of increasing path cost g(n)

Collections.sort(nodes, pathCostComparator)

}

}

Properties of Uniform-cost Search

● Uniform-cost search is complete
● Guaranteed to find an optimal solution if every

operator costs at least ε > 0, i.e, if the cost of a
path never decreases
● if operators can have negative cost an exhaustive

search of all nodes is required to find an optimal
solution

● Time and space complexity is O(b⌐C*/ε¬) where C*
is the cost of the optimal solution

Exponential Complexity Is Bad

● The eight-puzzle has about 105 states and can easily be
solved using uninformed search

● Typical solution is about 20 steps long and the average
branching factor is about 3, which gives 320 = 3.5 ×109
states, but we can reduce this to about 3.5 ×105 by
eliminating duplicate states

● The fifteen-puzzle (only one tile larger in each direction)
has about 1013 states without duplicates and cannot be
solved using uninformed search on current computers
(10,000 GB at one byte per state)

● To solve larger problems, some domain specific
knowledge must be added to improve search efficiency

Focusing the Search

● Using the path cost g(n) allows us to find an
optimal solution

● However it does not direct search toward the
goal

● In order to focus the search, we need an
evaluation function which incorporates some
estimate of the cost of a path from a state to the
closest goal state

Informed Search

● Informed (or heuristic) search procedures use some form of
(often inexact) information to guide the search towards more
promising partial solutions

● The cost of a partial solution, n, is defined as

f(n) = g(n) + h(n)

where g(n) is the path cost from the start state to n and h(n)
is an estimate of the cost of going from state n to a goal
state

● h(n) is often called the heuristic function - the more accurate
the heuristic function, the more efficient the search

Informed Search Procedures

● Costs are used to order partial solutions so that the
most promising (least cost) nodes are expanded first
● greedy search expands the node with the lowest h(n)

value, i.e., the node which is estimated to be closest to the
goal

● A* search expands the node with the lowest f(n) value,
i.e., the path through n with the lowest estimated cost

● In contrast, uniform-cost search expands the node
with the lowest g(n) value, i.e., the node with the
lowest path cost

A* Search

● A* search expands leaf nodes in order of cost (as measured
by the cost function f(n))

● Expands the root node, then the lowest cost child of the root
node, then the lowest cost unexpanded node etc.

● Fans out from the root node, expanding nodes in bands of
increasing f-cost

● With uniform-cost search (A* with h(n) = 0 for all n) the
bands are circular around the start state

● With more accurate heuristics, the bands are distorted
towards the goal state around the optimal path

Example: A* Search

Example: Simple Route Planning

● Initial state: A

● Goal state: F

● Heuristic function: straight line distance to F

Straight Line Distances from F

City Distance from F

A 100

B 80

C 93

D 43

E 47

G 37

Example: A* Search

Example: A* Search

Example: A* Search

Example: A* Search

Example: A* Search

Example: A* Search

A* Search Algorithm

// pseudocode implementing A* search

public Node A*Search(SearchProblemproblem) {

LinkedList<Node> nodes

 = new LinkedList<Node>(new Node(problem.initialState()))

while(true) {

if (nodes.size() == 0) then { return failure }

Node node = nodes.removeFirst()

if (problem.goalTest(node.state()) then { return node }

nodes.addAll(node.expand(problem.operators())

// Sort the nodes in order of increasing estimated cost f(n)

Collections.sort(nodes, estimatedCostComparator)

}

}

Properties of A*

● A* is complete on locally finite graphs (graphs with a finite
branching factor) provided there is some positive constant δ
such that each operator costs at least δ

● It is optimal if the heuristic function h is admissible, i.e,. it never
overestimates the cost of reaching a goal state from the current
state

● If h is admissible, f(n) never overestimates the actual cost of the
best solution through n

● Time and space complexity is O(bd) where d is the depth of the
solution unless |h(n) − h*(n)| ≤ O(log h*(n))

● A* is optimally efficient for any given heuristic function - no other
optimal algorithm is guaranteed to expand fewer nodes than A*

Comparison of Search Procedures

Search Procedure Complete Optimal Optimally
Effifient

depth-first no no -

breadth-first yes yes* no

uniform-cost yes yes no

greedy no no -

A* yes yes yes

Total Search Cost

● The search cost is a function of the time and memory
required to find a solution

● The total cost of the search is the sum of the path
cost and the search cost

● For large complex problems, there is usually a
tradeoff to be made
● finding a better or an optimal solution (least path cost)

usually has a higher search cost

● The relative importance of these two costs determines
how much computation we are prepared to do for a
given improvement in solution quality

General Search

● All of the search procedures presented (informed and
uninformed) follow the same basic pattern

● The difference is in the order in which new states are
expanded (e.g., breadth- or depth-first, or in cost
order)

● We can write a general search method that can be
specialised to different search procedures

● To do this, we use a queue data-structure which
determines the order in which nodes are expanded

Node Queue

// An abstract queue data structure

public interface Queue{

public void push(List<Node> n);

public Node pop();

public boolean isEmpty();

}

General Search

// pseudocode implementing general search

public Node GeneralSearch(SearchProblem problem, Queue nodes)

{

nodes.push(new Node(problem.initialState());

while(true) {

if (nodes.isEmpty()) then { return failure }

Node node = nodes.pop()

if (problem.goalTest(node.state()) then { return node }

nodes.push(node.expand(problem.operators());

}

}

Search Strategies

// breadthfirst search

return generalSearch(problem, new FIFOQueue());

// depthfirst search

return generalSearch(problem, new LIFOQueue());

// uniformcost search

return generalSearch(problem, new PrioQueue(g));

// greedy search

return generalSearch(problem, new PrioQueue(h));

// A* search

return generalSearch(problem, new PrioQueue(f));

// In Java: Queue, Stack, PriorityQueue

Eliminating Loops

● The psuedocode presented in these slides leaves out several details, in
particular elimination of loops, discussed in Lecture 2

● Elimination of loops can be accomplished by at least two approaches:

● avoid visiting a state we have already visited in this path (node);

● avoid visiting a state we have ever visited before (in any path).

● The second option is only ok for algorithms which guarantee that the first
encounter of a state will be the shortest path to that state (e.g., uniform cost
search), or if we don’t care about the path

● In practice, avoiding loops in a node path is often good enough

Keeping Track of All Previous States

public Node GeneralSearch(SearchProblem problem, Queue nodes)

{

// Store all previously visited states: may be large!

Set<State> visited = new HashSet<State>();

nodes.push(new Node(problem.initialState());

while(true) {

if (nodes.isEmpty()) then { return failure }

Node node = nodes.pop()

if (problem.goalTest(node.state()) then { return node }

for each (newNode in node.expand(problem.operators()) {

if (visited.contains(newNode.state()) { // skip }

else {visited.add(newNode.state()); nodes.push(newNode)}

}

}

}

Eliminating Loops in a Node

public Node GeneralSearch(SearchProblem problem, Queue nodes)

{

nodes.push(new Node(problem.initialState());

while(true) {

if (nodes.isEmpty()) then { return failure }

Node node = nodes.pop()

if (problem.goalTest(node.state()) then { return node }

// Push nodes for states not already in this node path

for (Node newNode : node.expand(problem.operators())

if (newNode.state() is not in node.path()) {

nodes.push(newNode)

}

}

}

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

